8z^2-40z^2+56z=0

Simple and best practice solution for 8z^2-40z^2+56z=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8z^2-40z^2+56z=0 equation:



8z^2-40z^2+56z=0
We add all the numbers together, and all the variables
-32z^2+56z=0
a = -32; b = 56; c = 0;
Δ = b2-4ac
Δ = 562-4·(-32)·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3136}=56$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-56}{2*-32}=\frac{-112}{-64} =1+3/4 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+56}{2*-32}=\frac{0}{-64} =0 $

See similar equations:

| n+(-8)=5n= | | -3.3=r-4.6 | | 7/10=1/2-1/5z | | 7y+9=11y-11 | | 3+2x=9x+3+21+18 | | 7(22)-23=11y-1 | | q=+2 | | 22x=3x-12 | | 1/4+1/2+x=-3/5 | | 3b-1/5=-3 | | x+7+x+7.5-10+x=67 | | 180=7(22)-23+11y-1 | | ½(4h+8)=3h+6 | | 3(x+3)-2=3(x+3) | | 11n-2=17 | | 2x+6+10+1=x+17 | | -6=2x2 | | 3(x+3)-2=6(x+4) | | 3(x+3)-2=6(x+4)-5 | | 2x-4=1x-2 | | 180=7x-23+49 | | x-0.5-0.75x=0.375 | | 0.04-5=0.08p+3 | | 18b=11 | | (2x-7)=(3x-26) | | 8=q+6 | | 3(x+21)=2(x+2) | | 14=18+4f | | 10+x=3-2x=4+21 | | 2y-1/6=-8 | | 2g+-6=3g | | 6m–15=0 |

Equations solver categories